高效利用弱磁能新型收集器助物联网传感器“自发电”催生了物联网技术的快速发展
我国双碳战略倡导绿色,环保,低碳的生活方式,这有赖于绿色能源技术的不断发展创新在我国大力发展可再生能源的当下,磁能等现实环境中微能源的回收再利用引起众多研究者的关注
哈尔滨工程大学水声工程学院与创新发展基地海洋磁传感器和探测团队青年教师,副教授储昭强研究设计了一种新型弱磁能收集器结构,可使物联网传感器免于更换,维修电池等种种人工繁琐操作,实现弱磁条件下的自发电,其输出功率比传统磁能收集结构提高约120%最近几天,该研究学术论文两端夹持磁—力—电俘能器件中显著增强的弱磁能量回收性能在能源材料领域国际著名期刊《先进能源材料》在线发表
回收再利用环境中的微能源
万物互联是打造智能世界的一个重要引擎,也催生了物联网技术的快速发展目前,发展物联网的一大挑战是寻找传感通信节点的自供能技术,以支持大规模,分布式传感网络的构建
针对这一技术挑战,我国多个领域都在积极筹划以图破解之道2021年国家重点研发计划智能传感器重点专项针对人体多参量生物传感器在无线场景下自供能入网难题,提出研究从人体获取能量的自供能技术,2022年国家重点研发计划智能传感器重点专项针对配用电网络状态感知分布式传感器的供能入网难题,提出了磁电耦合自供能磁场敏感元件及传感器的项目指南,2022年国家自然科学基金也将攻关航天用微型压电振动俘能技术纳入指南范围
可以说发展分布式能源获取技术,实现环境中微能源的回收再利用具有重要价值,也是响应国家节能减排战略,助力碳达峰的有效举措。
对于环境微能源的回收利用,在振动能,辐射能和近场电磁能等众多可收集能源中,电力电缆,工业机械和家用电器等产生的杂散磁能由于其频率固定和分布广泛,比风能等低频能量获取效率更高,一直受到研究人员的关注特别是在建设智能电网的背景下,对输电线路状态参数的在线监测与故障诊断迫切需要从架空电缆中俘获能量而构建可持续的自供能传感网络
就如小说《三体》中描绘的那个美丽新世界,杯子无需电源,电池,可以自加热,空中的飞车也不用电池,却能不停地飞,永远也不会没有电,都是由于电源用微波或其他形式的电磁震荡来发电而形成的无线供电场这种技术其实就是目前用于手机无线充电的技术最初,人们也把目光投向了这种传统线圈式感应取电装置但是这种技术有着体积大,安装不便和难以耐受短时大电流冲击等突出问题
因而,人们开始研究一种由磁能转化为机械能再转化为电能的俘能装置,这一技术有望成为下一代低频磁场能量收集的新选择。从图中可以看出,相机顶部具有8英寸肩屏,自定义显示快门,光圈,ISO等参数。在拍摄静止画面时,可显示剩余张数;录制视频时,可显示剩余录制时间。
储昭强介绍,这种新型俘能器件是利用磁扭矩效应以及磁滞伸缩效应,再利用压电效应实现机械能与电能之间的转换,其优势在于无需线圈式感应取电装置所需的闭合磁路,且可以实现更高效率的能量转换和对强电流脉冲的更高耐受度。。
适用于低场能量收集的新方法
储昭强从2016年开始接触振动和磁场的能量收集技术从2016年到2021年,一直致力于基于传统悬臂梁式谐振结构的材料和器件方面的研究这是一种一端固定而另一端自由,且在自由端附加质量块的能量收集器结构这种结构由自由端磁性质量块提供驱动扭矩,同时贡献了超过90%的等效质量在这种情况下,如果要维持谐振器50赫兹的谐振频率不变,则难以单纯通过增加自由端磁铁的质量来增强磁—力耦合性能也正是这个原因,目前大多数研究的悬臂梁式磁—机—电器件仅局限于对强磁场,即大于5奥斯特磁场的能量收集世界卫生组织指出公众可接触的50/60Hz交变磁场安全阈值为1Oe,而且环境中杂散磁场的大小一般也低于此参考值因此也有必要探索适应于低场能量收集的新原理和新方法
基于磁—机—电俘能器件如何降低自由端磁性质量块的等效质量这一思考,储昭强大胆创新,提出了一种两端夹持梁的设计思路这种设计使磁—机—电俘能器件的两端都固定起来,采用一种二阶振动模式,降低了中心磁性质量块的动能,从而减小了其对谐振系统等效质量的贡献,在增加磁铁体积的情况下大大提升了系统在50Hz弱场条件下的输出性能
实验表明,在弱磁环境的相同激励条件下,该能量收集器在同等单位时间内可输出的电能是传统悬臂梁式结构的2倍多,完全可以使没有安装电池的传感器正常工作并与手机终端进行通信连接。
未来或用于水下小型仿生平台
目前,这种对于磁场的能量收集技术在应用上还有一定的局限性,科学总是解决了一个问题就会带来很多新问题的过程储昭强向科技日报记者表示,未来,他将主要考虑进一步优化两端夹持磁—机—电俘能器件在材料方面,几何方面的参数设计,进一步实现增加适应的磁场变化范围和微型化的集成,为研制自供能磁场敏感元件,电网输变电智能感知与配用电网络拓扑关系识别等应用提供关键技术
储昭强同时表示,团队将结合哈尔滨工程大学船海科研特色优势,深入研究水下小型仿生平台如水下机器鱼,无人水下航行器等基于超声和磁场的无线供能技术,这不仅能解决小型仿生平台等能源取的问题,同时解决能源供的问题。
储昭强所在的哈尔滨工程大学水声学院与创新发展基地海洋磁传感器和探测团队于2017年成立并不断发展壮大,团队瞄准水下目标多传感探测的基础理论,关键技术和工程应用,全面开展了基础磁材料,磁传感器研制,水下信息感知和处理等技术研究。相机左侧的模式转盘,拥有多达6个自定义档位。此外,左侧还具有拍照和录像切换按键。
。郑重声明:此文内容为本网站转载企业宣传资讯,目的在于传播更多信息,与本站立场无关。仅供读者参考,并请自行核实相关内容。